LETTERS 2004 Vol. 6, No. 11 ¹⁷⁸⁵-**¹⁷⁸⁷**

ORGANIC

Trans-Selective Conversions of *^γ***-Hydroxy-**r**,***â***-Alkynoic Esters to** *γ***-Hydroxy-α,β-Alkenoic Esters**

Christopher T. Meta and Kazunori Koide*

*Department of Chemistry, Uni*V*ersity of Pittsburgh, 219 Parkman A*V*enue, Pittsburgh, Pennsyl*V*ania 15260*

koide@pitt.edu

Received March 11, 2004

ABSTRACT

*^γ***-Hydroxy-**r**,***â***-acetylenic esters are used as precursors to prepare** *^γ***-hydroxy-**r**,***â***-alkenoic esters by means of trans-selective additions of two hydrogen atoms or one hydrogen atom and one iodine atom across the triple bonds. These methods allow for the preparation of** *â***-substituted** and α _{β}**-disubstituted alkenoic esters in highly stereoselective manners.**

Stereoselective alkene synthesis is an important topic in organic synthesis.1 Of particular interest are the preparation of α , β -alkenoic esters because these compounds are versatile synthetic intermediates $2,3$ and are contained in many natural products.4 This class of compounds has been prepared by several different methods,^{3,5,6} among which the most common method is the Wittig approach. The shortcomings of the Wittig approach are that α -alkoxy (or hydroxy) aldehydes are prone to epimerization and that an α -alkoxy group often influences the *E*:*Z* selectivity of the Wittig reactions, often generating a mixture of stereoisomers.6,7

Alternatively, *^γ*-hydroxy-R,*â*-acetylenic esters **^A**, which can be prepared enantioselectively by known methods⁸ in

(3) Chen, C.; Tagami, K.; Kishi, Y. *J. Org. Chem.* **¹⁹⁹⁵**, *⁶⁰*, 5386- 5387.

10.1021/ol0495366 CCC: \$27.50 © 2004 American Chemical Society **Published on Web 04/29/2004**

several steps from the corresponding aldehydes, have potential to be excellent precursors for **B** (Scheme 1). However, the conversion of \bf{A} to \bf{B} is extremely rare,⁹ presumably due to the lack of a general method for achieving trans addition of two hydrogen atoms across the triple bond in a kinetically controlled manner. (*E*)-selective reductions of propargylic

^{(1) (}a) Faulkner, D. J. *Synthesis* **¹⁹⁷¹**, 175-189. (b) Maciagiewicz, I.; Dybowski, P.; Skowronska, A. *Tetrahedron* **²⁰⁰³**, *⁵⁹*, 6057-6066.

^{(2) (}a) Gung, B. W.; Francis, M. B. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 6177- 6179. (b) Ibuka, T.; Taga, T.; Habashita, H.; Nakai, K.; Tamamura, H.; Fujii, N. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 1207-1214. (c) Marshall, J. A.; Elliott, L. M. *J. Org. Chem.* **¹⁹⁹⁶**, *⁶¹*, 4611-4616. (d) McKinney, J. A.; Eppley, D. F.; Keenan, R. M. *Tetrahedron Lett.* **¹⁹⁹⁴**, *³⁵*, 5985-5988. (e) Zheng, W.; DeMattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. *J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 7946-7968. (f) Noda, M.; Ibuka, T.; Habashita, H.; Fujii, N. *Chem. Pharm. Bull.* **¹⁹⁹⁷**, *⁴⁵*, 1259-1264. (g) Lee, J. Y.; Chung, Y. J.; Bae, Y.-S.; Ryu, S. H.; Kim, B. H. *J. Chem. Soc., Perkin Trans. 1* **¹⁹⁹⁸**, 359-365. (h) Berts, W.; Luthman, K. *Tetrahedron* **1999**, *55*, 13819–13830. (i) Kiefelt, M. J.; Wilson, J. C.; Bennett, S.; Gredley M : von Itzstein M *Bioorg Med Chem 2000 8 657–664* (i) Gredley, M.; von Itzstein, M. *Bioorg. Med. Chem.* **²⁰⁰⁰**, *⁸*, 657-664. (j) Ohba, M.; Izuta, R. *Heterocycles* **²⁰⁰¹**, *⁵⁵*, 823-826. (k) Hong, Z.; Xu, X. *Tetrahedron Lett.* **²⁰⁰³**, *⁴⁴*, 489-491.

^{(4) (}a) Aldridge, D. C.; Armstrong, J. J.; Speake, R. N.; Turner, W. B. *Chem. Commun.* **¹⁹⁶⁷**, 26-27. (b) Weber, H. P.; Hauser, D.; Sigg, H. P. *Helv. Chim. Acta* **1971**, *54*, 2763-2766. (c) Büchi, G.; Kitaura, Y.; Yuan, S.-S.; Wright, H. E.; Clardy, J.; Demain, A. L.; Glinsukon, T.; Hunt, N.; Wogan, G. N. *J. Am. Chem. Soc.* **¹⁹⁷³**, *⁹⁵*, 5423-5425. (d) Huneck, S.; Schreiber, K.; Steglich, W. *Tetrahedron* **¹⁹⁷³**, *²⁹*, 3687-3693. (e) Rodphaya, D.; Sekiguchi, J.; Yamada, Y. *J. Antibiot.* **¹⁹⁸⁶**, *³⁹*, 629-635. (f) Takamatsu, S.; Kim, Y. P.; Hayashi, M.; Hiraoka, H.; Natori, M.; Komiyama, K.; Omura, S. *J. Antibiot.* **¹⁹⁹⁶**, *⁴⁹*, 95-98. (g) Hu, T.; Curtis, J. M.; Walter, J. A.; Wright, J. L. C. *Tetrahedron Lett.* **¹⁹⁹⁹**, *⁴⁰*, 3977- 3980. (h) Smith, C. J.; Abbanat, D.; Bernan, V. S.; Maiese, W. M.; Greenstein, M.; Jompa, J.; Tahir, A.; Ireland, C. M. *J. Nat. Prod.* **2000**, *63*, ¹⁴²-145. (i) Yamada, T.; Iritani, M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. *J. Chem. Soc., Perkin Trans. 1* **²⁰⁰¹**, 3046-3053. (j) Berg, A.; Notni, J.; Dörfelt, H.; Gräfe, U. *J. Antibiot.* **2002**, 55, 660-662.

⁽⁵⁾ Tanikaga, R.; Nozaki, Y.; Tamura, T.; Kaji, A. *Synthesis* **¹⁹⁸³**, 134- 135.

⁽⁶⁾ Harcken, C.; Martin, S. F. *Org. Lett.* **²⁰⁰¹**, *³*, 3591-3593.

⁽⁷⁾ Koenig, S. G.; Lo¨we, R. S.; Austin, D. J. *Synth. Commun.* **2002**, *32*, ¹³⁷⁹-1383.

^{(8) (}a) Anand, N. K.; Carreira, E. M. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 9687- 9688. (b) Frantz, D. E.; Fassler, R.; Carreira, E. M. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 1806-1807. (c) Moore, D.; Pu, L. *Org. Lett.* **²⁰⁰²**, *⁴*, 1855- 1857. (d) Lu, G.; Li, X. S.; Chan, W. L.; Chan, A. S. C. *Chem. Commun.* **²⁰⁰²**, 172-173.

⁽⁹⁾ Trost, B. M.; Crawley, M. L. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 9328- 9329.

alcohols are known, calling for $LiAlH_4-NaOMe$ in THF at reflux¹⁰ or NaAlH₂(OCH₂CH₂OCH₃)₂ (Red-Al) at room temperature.11 However, these reaction conditions are not compatible with many functional groups. Herein, we report a general method for preparing **B** from **A** by a simple procedure using readily available sodium borohydride or Red-Al at lower temperatures.

Recently, we reported the reduction of ketone **1** to form (E) -enoate **3** (Scheme 2).¹² We hypothesized that this

unexpected stereoselective reduction of the ynoate proceeded through intermediate **2**.

To test this hypothesis, we treated alcohol **4** with NaBH4 at -34 °C in methanol and found that (*E*)-enoate **5** was formed in 86% isolated yield (Scheme 3, eq a). We were

Scheme 3. Control Experiments to Elucidate the Mechanism of the Trans-Selective Reduction of Acetylenic Esters

quant.

11

not able to detect any other byproducts even when this reaction was performed in an NMR tube in $CD₃OD$ (from -72 to 20 °C) in an attempt to detect minor products.

To gain insight into the mechanism of this stereoselective reduction, this reaction was carried out in $CD₃OD$ (eq b). Subsequently, the deuterated compound **6** was isolated as a sole product, suggesting the conjugate addition of a hydride at C-3 of **4**. To address the role of the hydroxy group at the *γ*-position in this stereoselective reduction of **4**, the TBSprotected derivative **7** was subjected to the same reaction conditions (1.2 equiv of NaBH₄ in MeOH at -30 °C), which resulted in the recovery of the starting material in a quantitative yield. When this reduction was carried out at 0 °C for 1 h, the NMR spectrum of the resulting crude mixture showed the presence of approximately 15% enoates **8** (*E*:*Z* $= 1:2$) together with 80% of the starting material (eq c). We also treated acetylenic ester 9 with NaBH₄ in methanol at 0 °C, which resulted in the recovery of the starting material in nearly quantitative yield (eq d). These results suggest that the reduction of **4** to **5** is facilitated by the *γ*-hydroxy group, and this hydroxy group is involved in *E*/*Z* stereocontrol. To determine whether this reduction was a thermodynamic or a kinetic process, NaBH4 was added to a solution of (*Z*)-enoate **10** in methanol at -34 °C. The olefin was reduced to the saturated methyl ester 11 , and no trace of (E) -olefin 5 was detected (eq e). This result indicates that *the reduction of* **4** *to* **5** *is kinetically controlled*.

This (*E*)-selective reduction of acetylenic esters appears to be general, as shown in Table 1. Upon treatment of the acetylenic esters **2** and **4** with NaBH4 in methanol (condition **a**), the corresponding (E) -enoates **D** were obtained in good to excellent yields with little **E**. The base-sensitive *N*-Fmoc group of alcohol **12**¹³ was found to be compatible with this method, providing the corresponding (*E*)-enoate in quantitative yield with excellent (*E*)-selectivity ((*Z*)-isomer was not detectable). Sterically more hindered alcohols **13** and **14** gave somewhat compromised stereoselectivities.

To further improve the (*E*)-selectivities of the sterically hindered alcohols **13** and **14**, we turned our attention to other reducing agents. After screening various reducing agents,¹⁴ we found that Red-Al showed excellent (*E*)-selectivities in the reduction of alcohols **13** and **14** to form the corresponding α , β -alkenoic esters (Table 1, condition **b**). It is noteworthy that the ¹ H NMR analyses of the crude mixtures of these two reactions indicate that neither formations of the corresponding (*Z*)-enoates or saturated compounds nor reduction of the methyl esters occurred. To test the compatibility of this Red-Al reduction with an epoxide, compound **15**¹¹ was treated with Red-Al at -72 °C for 25 min to afford the

10

⁽¹⁰⁾ Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. *J. Am. Chem. Soc.* **¹⁹⁶⁷**, *⁸⁹*, 4245-4247.

^{(11) (}a) Marshall, J. A.; DeHoff, B. S. *J. Org. Chem.* **¹⁹⁸⁶**, *⁵¹*, 863- 872. (b) Kucera, D. J.; O'Connor, S. J.; Overman, L. E. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 5304-5306. (c) Roulland, E.; Monneret, C.; Florent, J.-C. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 4399-4406.

⁽¹²⁾ Naka, T.; Koide, K. *Tetrahedron Lett.* **²⁰⁰³**, *⁴⁴*, 443-445.

⁽¹³⁾ Shahi, S. P.; Koide, K. *Angew. Chem., Int. Ed.* **²⁰⁰⁴**, *⁴³*, 2525- 2527.

⁽¹⁴⁾ Besides NaBH4 and Red-Al, we tested NaBH3CN, *n*-Bu4NBH4, and BH3, none of which afforded the desired product.

a Reagents and conditions: (a) $NabH_4$ (1.2-4 equiv), MeOH, -34 to 0 °C, 15-50 min; (b) Red-Al (2 equiv), THF, -72 °C, 25 min.

corresponding (*E*)-alkenoate in 80% yield. Therefore, the NaBH4- or Red-Al-mediated (*E*)-selective reductions of acetylenic esters are compatible with both the base-sensitive *N*-Fmoc group and the electrophilic epoxide.

We speculate that this unusual trans addition of two hydrogen atoms across the C-C triple bond can be accounted for by either of the following mechanisms (Scheme 4). First, both Red-Al and NaBH4 react with alcohol **C** to form intermediate **F**. Then, a hydride is delivered intramolecularly

to form allenolate **G**. We postulate two possible pathways from this point. Either allenolate **G** reacts with MeOH or H2O acidified by the Lewis acid formed at the bottom face of the allenolate as shown in **H** (path *a*) or ate complex **I** reacts with MeOH or H_2O to form compound **D**. These working hypotheses imply wide applications of this method by using other electrophiles.

To extend the application of the trans-selective Red-Alpromoted conjugate addition toward acetylenic esters, the Red-Al reduction of 4 was quenched with I_2 rather than water (Scheme 5). Subsequently, we isolated vinyl iodide **16** in

^{*a*} Reagents and conditions: (a) Red-Al (1.5 equiv), -72 °C, 25 min; then I₂ (5.0 equiv), $-72 \rightarrow -10$ °C, THF, 2 h, 78%; (b) 1-hexyne (2.0 equiv), Pd(Ph3P)4 (10 mol %), CuI (5 mol %), i -Pr₂NH (excess), 23 °C, 6 h, 64%; (c) CH₂=CHSnBu₃ (1.2 equiv), Pd(Ph₃P)₂Cl₂ (2 mol %), DMF, 23 °C, 48 h, 45%.

78% yield.15 This vinyl iodide could be transformed into disubstituted alkenoates **17** (64% yield; not optimized) and **18** (45% yield; not optimized) by means of Sonogashira coupling and Stille coupling, respectively. These two-step schemes have potential for the preparation of highly conjugated disubstituted alkenoates in a trans-selective manner.

In conclusion, we have developed a general method for preparing synthetically versatile (*E*)-enoates **D** and (*Z*)-enoate **16** from acetylenic esters **C** under mild conditions. The working hypothesis depicted in Scheme 4 indicates that it is possible to further functionalize intermediate **G** or **I** with other electrophiles.

Acknowledgment. Financial support was provided by the University of Pittsburgh and CRDF. We thank Dr. Fu-Tian Lin for assistance in NMR experiments and Dr. Kasi Somayajulafor for assistance with mass spectroscopy.

Supporting Information Available: ¹ H NMR, 13C NMR, IR, and HRMS data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0495366

^{(15) (}*Z*)-geometry of vinyl iodide **16** was determined by means of a NOESY experiment after the DIBALH reduction of a closely related compound (see Supporting Information for details).