2004 Vol. 6, No. 11 1785–1787

Trans-Selective Conversions of γ -Hydroxy- α , β -Alkynoic Esters to γ -Hydroxy- α , β -Alkenoic Esters

Christopher T. Meta and Kazunori Koide*

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260

koide@pitt.edu

Received March 11, 2004

ABSTRACT

 γ -Hydroxy- α , β -acetylenic esters are used as precursors to prepare γ -hydroxy- α , β -alkenoic esters by means of trans-selective additions of two hydrogen atoms or one hydrogen atom and one iodine atom across the triple bonds. These methods allow for the preparation of β -substituted and α , β -disubstituted alkenoic esters in highly stereoselective manners.

Stereoselective alkene synthesis is an important topic in organic synthesis. Of particular interest are the preparation of α,β -alkenoic esters because these compounds are versatile synthetic intermediates and are contained in many natural products. This class of compounds has been prepared by several different methods, 3,5,6 among which the most common method is the Wittig approach. The shortcomings of the Wittig approach are that α -alkoxy (or hydroxy) aldehydes are prone to epimerization and that an α -alkoxy group often influences the E:Z selectivity of the Wittig reactions, often generating a mixture of stereoisomers. The shortcomings of the generating a mixture of stereoisomers.

Alternatively, γ -hydroxy- α , β -acetylenic esters **A**, which can be prepared enantioselectively by known methods⁸ in

several steps from the corresponding aldehydes, have potential to be excellent precursors for $\bf B$ (Scheme 1). However, the conversion of $\bf A$ to $\bf B$ is extremely rare, presumably due to the lack of a general method for achieving trans addition of two hydrogen atoms across the triple bond in a kinetically controlled manner. (*E*)-selective reductions of propargylic

^{(1) (}a) Faulkner, D. J. *Synthesis* **1971**, 175–189. (b) Maciagiewicz, I.; Dybowski, P.; Skowronska, A. *Tetrahedron* **2003**, *59*, 6057–6066.

^{(2) (}a) Gung, B. W.; Francis, M. B. J. Org. Chem. 1993, 58, 6177–6179. (b) Ibuka, T.; Taga, T.; Habashita, H.; Nakai, K.; Tamamura, H.; Fujii, N. J. Org. Chem. 1993, 58, 1207–1214. (c) Marshall, J. A.; Elliott, L. M. J. Org. Chem. 1996, 61, 4611–4616. (d) McKinney, J. A.; Eppley, D. F.; Keenan, R. M. Tetrahedron Lett. 1994, 35, 5985–5988. (e) Zheng, W.; DeMattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946–7968. (f) Noda, M.; Ibuka, T.; Habashita, H.; Fujii, N. Chem. Pharm. Bull. 1997, 45, 1259–1264. (g) Lee, J. Y.; Chung, Y. J.; Bae, Y.-S.; Ryu, S. H.; Kim, B. H. J. Chem. Soc., Perkin Trans. 1 1998, 359–365. (h) Berts, W.; Luthman, K. Tetrahedron 1999, 55, 13819–13830. (i) Kiefelt, M. J.; Wilson, J. C.; Bennett, S.; Gredley, M.; von Itzstein, M. Bioorg. Med. Chem. 2000, 8, 657–664. (j) Ohba, M.; Izuta, R. Heterocycles 2001, 55, 823–826. (k) Hong, Z.; Xu, X. Tetrahedron Lett. 2003, 44, 489–491.

⁽³⁾ Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386-5387

^{(4) (}a) Aldridge, D. C.; Armstrong, J. J.; Speake, R. N.; Turner, W. B. Chem. Commun. 1967, 26—27. (b) Weber, H. P.; Hauser, D.; Sigg, H. P. Helv. Chim. Acta 1971, 54, 2763—2766. (c) Büchi, G.; Kitaura, Y.; Yuan, S.-S.; Wright, H. E.; Clardy, J.; Demain, A. L.; Glinsukon, T.; Hunt, N.; Wogan, G. N. J. Am. Chem. Soc. 1973, 95, 5423—5425. (d) Huneck, S.; Schreiber, K.; Steglich, W. Tetrahedron 1973, 29, 3687—3693. (e) Rodphaya, D.; Sekiguchi, J.; Yamada, Y. J. Antibiot. 1986, 39, 629—635. (f) Takamatsu, S.; Kim, Y. P.; Hayashi, M.; Hiraoka, H.; Natori, M.; Komiyama, K.; Omura, S. J. Antibiot. 1996, 49, 95—98. (g) Hu, T.; Curtis, J. M.; Walter, J. A.; Wright, J. L. C. Tetrahedron Lett. 1999, 40, 3977—3980. (h) Smith, C. J.; Abbanat, D.; Bernan, V. S.; Maiese, W. M.; Greenstein, M.; Jompa, J.; Tahir, A.; Ireland, C. M. J. Nat. Prod. 2000, 63, 142—145. (i) Yamada, T.; Iritani, M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. J. Chem. Soc., Perkin Trans. 1 2001, 3046—3053. (j) Berg, A.; Notni, J.; Dörfelt, H.; Gräfe, U. J. Antibiot. 2002, 55, 660—662.

⁽⁵⁾ Tanikaga, R.; Nozaki, Y.; Tamura, T.; Kaji, A. Synthesis 1983, 134– 135.

⁽⁶⁾ Harcken, C.; Martin, S. F. Org. Lett. 2001, 3, 3591-3593.

⁽⁷⁾ Koenig, S. G.; Löwe, R. S.; Austin, D. J. Synth. Commun. 2002, 32, 1379–1383.

^{(8) (}a) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. **2001**, 123, 9687–9688. (b) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. **2000**, 122, 1806–1807. (c) Moore, D.; Pu, L. Org. Lett. **2002**, 4, 1855–1857. (d) Lu, G.; Li, X. S.; Chan, W. L.; Chan, A. S. C. Chem. Commun. **2002**, 172–173.

⁽⁹⁾ Trost, B. M.; Crawley, M. L. J. Am. Chem. Soc. 2002, 124, 9328-9329

Scheme 1. Trans-Selective Reduction of Acetylenic Esters

$$\begin{array}{c|c} \text{OH} & & & \\ \text{R} & & & \\ \hline & \text{CO}_2 \text{R}' & & & \\ & \text{A} & & & \text{B} & \\ \end{array}$$

alcohols are known, calling for LiAlH₄-NaOMe in THF at reflux¹⁰ or NaAlH₂(OCH₂CH₂OCH₃)₂ (Red-Al) at room temperature.¹¹ However, these reaction conditions are not compatible with many functional groups. Herein, we report a general method for preparing B from A by a simple procedure using readily available sodium borohydride or Red-Al at lower temperatures.

Recently, we reported the reduction of ketone 1 to form (E)-enoate 3 (Scheme 2).¹² We hypothesized that this

Scheme 2. Trans-Selective Reduction of γ -Keto- α , β -acetylenic

$$\begin{array}{c|c}
O & NaBH_4 & OH \\
\hline
CO_2Me & -72 \rightarrow 0 \ ^{\circ}C & CO_2Me \\
\hline
1 & CO_2Me & 3
\end{array}$$

unexpected stereoselective reduction of the ynoate proceeded through intermediate 2.

To test this hypothesis, we treated alcohol 4 with NaBH₄ at -34 °C in methanol and found that (E)-enoate 5 was formed in 86% isolated yield (Scheme 3, eq a). We were

Scheme 3. Control Experiments to Elucidate the Mechanism of the Trans-Selective Reduction of Acetylenic Esters

OH Ph
$$OP_{A}$$
 OP_{A} $OP_{$

NaBH₄ (1.2 equiv)

MeOH, -34 °C

quant.

CO₂Me

10

not able to detect any other byproducts even when this reaction was performed in an NMR tube in CD₃OD (from −72 to 20 °C) in an attempt to detect minor products.

To gain insight into the mechanism of this stereoselective reduction, this reaction was carried out in CD₃OD (eq b). Subsequently, the deuterated compound 6 was isolated as a sole product, suggesting the conjugate addition of a hydride at C-3 of 4. To address the role of the hydroxy group at the γ -position in this stereoselective reduction of 4, the TBSprotected derivative 7 was subjected to the same reaction conditions (1.2 equiv of NaBH₄ in MeOH at -30 °C), which resulted in the recovery of the starting material in a quantitative yield. When this reduction was carried out at 0 °C for 1 h, the NMR spectrum of the resulting crude mixture showed the presence of approximately 15% enoates 8 (E:Z = 1:2) together with 80% of the starting material (eq c). We also treated acetylenic ester 9 with NaBH₄ in methanol at 0 °C, which resulted in the recovery of the starting material in nearly quantitative yield (eq d). These results suggest that the reduction of 4 to 5 is facilitated by the γ -hydroxy group, and this hydroxy group is involved in E/Z stereocontrol. To determine whether this reduction was a thermodynamic or a kinetic process, NaBH₄ was added to a solution of (Z)-enoate 10 in methanol at -34 °C. The olefin was reduced to the saturated methyl ester 11, and no trace of (E)-olefin 5 was detected (eq e). This result indicates that the reduction of 4 to 5 is kinetically controlled.

This (E)-selective reduction of acetylenic esters appears to be general, as shown in Table 1. Upon treatment of the acetylenic esters 2 and 4 with NaBH₄ in methanol (condition \mathbf{a}), the corresponding (E)-enoates \mathbf{D} were obtained in good to excellent yields with little E. The base-sensitive N-Fmoc group of alcohol 12¹³ was found to be compatible with this method, providing the corresponding (E)-enoate in quantitative yield with excellent (E)-selectivity ((Z)-isomer was not detectable). Sterically more hindered alcohols 13 and 14 gave somewhat compromised stereoselectivities.

To further improve the (E)-selectivities of the sterically hindered alcohols 13 and 14, we turned our attention to other reducing agents. After screening various reducing agents, ¹⁴ we found that Red-Al showed excellent (E)-selectivities in the reduction of alcohols 13 and 14 to form the corresponding α,β -alkenoic esters (Table 1, condition **b**). It is noteworthy that the ¹H NMR analyses of the crude mixtures of these two reactions indicate that neither formations of the corresponding (Z)-enoates or saturated compounds nor reduction of the methyl esters occurred. To test the compatibility of this Red-Al reduction with an epoxide, compound 15¹¹ was treated with Red-Al at -72 °C for 25 min to afford the

1786 Org. Lett., Vol. 6, No. 11, 2004

(e)

CO₂Me

11

⁽¹⁰⁾ Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 4245-4247.

^{(11) (}a) Marshall, J. A.; DeHoff, B. S. J. Org. Chem. 1986, 51, 863-872. (b) Kucera, D. J.; O'Connor, S. J.; Overman, L. E. J. Org. Chem. 1993, 58, 5304-5306. (c) Roulland, E.; Monneret, C.; Florent, J.-C. J. Org. Chem. 2002, 67, 4399-4406.

⁽¹²⁾ Naka, T.; Koide, K. Tetrahedron Lett. 2003, 44, 443-445.

⁽¹³⁾ Shahi, S. P.; Koide, K. Angew. Chem., Int. Ed. 2004, 43, 2525-2527.

⁽¹⁴⁾ Besides NaBH₄ and Red-Al, we tested NaBH₃CN, n-Bu₄NBH₄, and BH3, none of which afforded the desired product.

Table 1. Scope of NaBH₄ and Red-Al Reductions of Acetylenic Esters C^a

 a Reagents and conditions: (a) NaBH₄ (1.2–4 equiv), MeOH, -34 to 0 °C, 15–50 min; (b) Red-Al (2 equiv), THF, -72 °C, 25 min.

b

(15)

80

>40:1

corresponding (*E*)-alkenoate in 80% yield. Therefore, the NaBH₄- or Red-Al-mediated (*E*)-selective reductions of acetylenic esters are compatible with both the base-sensitive *N*-Fmoc group and the electrophilic epoxide.

We speculate that this unusual trans addition of two hydrogen atoms across the C-C triple bond can be accounted for by either of the following mechanisms (Scheme 4). First, both Red-Al and NaBH₄ react with alcohol C to form intermediate F. Then, a hydride is delivered intramolecularly

to form allenolate G. We postulate two possible pathways from this point. Either allenolate G reacts with MeOH or H_2O acidified by the Lewis acid formed at the bottom face of the allenolate as shown in H (path a) or ate complex I reacts with MeOH or H_2O to form compound D. These working hypotheses imply wide applications of this method by using other electrophiles.

To extend the application of the trans-selective Red-Alpromoted conjugate addition toward acetylenic esters, the Red-Al reduction of **4** was quenched with I₂ rather than water (Scheme 5). Subsequently, we isolated vinyl iodide **16** in

Scheme 5. Preparations of Highly Functionalized, α, β -Disubstituted Alkenoates^a

^a Reagents and conditions: (a) Red-Al (1.5 equiv), -72 °C, 25 min; then I₂ (5.0 equiv), -72 → -10 °C, THF, 2 h, 78%; (b) 1-hexyne (2.0 equiv), Pd(Ph₃P)₄ (10 mol %), CuI (5 mol %), *i*-Pr₂NH (excess), 23 °C, 6 h, 64%; (c) CH₂=CHSnBu₃ (1.2 equiv), Pd(Ph₃P)₂Cl₂ (2 mol %), DMF, 23 °C, 48 h, 45%.

78% yield.¹⁵ This vinyl iodide could be transformed into disubstituted alkenoates **17** (64% yield; not optimized) and **18** (45% yield; not optimized) by means of Sonogashira coupling and Stille coupling, respectively. These two-step schemes have potential for the preparation of highly conjugated disubstituted alkenoates in a trans-selective manner.

In conclusion, we have developed a general method for preparing synthetically versatile (E)-enoates \mathbf{D} and (Z)-enoate $\mathbf{16}$ from acetylenic esters \mathbf{C} under mild conditions. The working hypothesis depicted in Scheme 4 indicates that it is possible to further functionalize intermediate \mathbf{G} or \mathbf{I} with other electrophiles.

Acknowledgment. Financial support was provided by the University of Pittsburgh and CRDF. We thank Dr. Fu-Tian Lin for assistance in NMR experiments and Dr. Kasi Somayajulafor for assistance with mass spectroscopy.

Supporting Information Available: ¹H NMR, ¹³C NMR, IR, and HRMS data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0495366

Org. Lett., Vol. 6, No. 11, 2004

^{(15) (}Z)-geometry of vinyl iodide **16** was determined by means of a NOESY experiment after the DIBALH reduction of a closely related compound (see Supporting Information for details).